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ABSTRACT

Frequency stabilization plays a very critical role in diverse applications such as long,
distance fiber and fice space optical conmnunications, interferometric sensing, optical gy -
roscopes, squeczed states of light, atomnic heam trapping, and gravity wave detect jon.

Frequency stabilization ¢ an be achieved by locking, lasers to a Fabry- I’arot etalon. One
prossible frequency stabilization technique is to use an oscillator thiat dithers or modulates
the frequency of the lasars. ‘Jlit! frequency- dithered last] light isanalyzed via transinission
through the Fabry- Perot. The output of the ctalon is detected by a photodetector and then
corrclated with the dithering oscillator signal to obtain frequency locking error estimates
and subscquently controlthie frequenicy of the 1 ascrs.

A theorctical analysis is performed for a Fabry-1’crot frequency stabilization sub-
syst e, disturbed by shot noise and frequency noise consisting, of white, 1 /f,m.d]/f2
components. Contributions of t he shot 110ise and frequency noise components to the to-
tal frequen cy locking crror variance arc derived. Given the characteristics of the ctalon,
a1t optimal depth of frequen cy modulation is calculated for the dithering oscillator that
maximizes the locking error signal amplitude and hetice results inthe best possible locking,

paerformance. Total frequency locking error as a function of loop bandwidth is displayed.




Fitaally, the expected performance of anop thnized Fabry-Perot stabilization system is

estiimated.

]. INTRODUCTION

Frequency stabilization plays a very eritical roles inapplications such as data connnu-
nication, 120PPler tracking, and ultra- high ) necision al ssolute: distance measuring, where
coli erent optical heterodyne detection is utilized. The requirement of’ the laser frequency
st ability for coh eremt optical coimnunications was investigatedin [1], and shown that the
required signal power for, phase locked receiver cari be further reduced provided that
transimit and local oscillator Jaser are stabilized to a external reference. Farther nore,
optical carrier capabl ¢ of achieving similar frequency stability to current-day RY systemn
can potentially ofler significant improvement in space-craft navigation capabilities [1].

Optimal loop bandwidth Of the optical phase-locked Joop decreases with decrcasing
signal-to-noise ratio [2], and therefore excellent frequency stability is required in order to
achicve pliase colierent optica 1 heterodyne reeeption when low signal power reception 1S
expected. Sinee the speetral filtering 1S perforimed at interinediate frequency, where the
bandwidth sclection is very cflective, heterodyne detection oflers a good background noise
rejection. Bandwidth sclective nature of coherent receiver can also lead to a more ceflicient
use 0of the optical speetrum and potential for multiple access coommunication.  Siimilarly
i high- precision metrology using, imultiple-wavel engtli interferometry, highly stable laser
sources arc requircdio achieve sub-nanomet er measuranent s of absolute distances[3, 4].1n
all such app lcations, frequency of thelasers must be stabilized, at frequencies with relative
oflsets Lo cacly other, over prolonged period of tiime. This can be achieved by locking the
lasers to diflerent order peaks 0of a single Fabry-Perot etalon (FPE) as described below.

‘The conceprtual design of an FPE t wo-laser frequency stabilization system is shown in

Fig. 1. Thie two laser stabilizatjon systems are essentially independent and they share the




single ¥PE and single drive oscillator on a non-interacting basis. Whether or not! one laser
is locked to the FPE makes no difference to the other laser, and hence ouly one system
will be discussed in the following,.

The laser frequency is modulated, at a rate much higher than the basic laser frequency
Jtter, using the signal from the common drive oscillator. After passing through the FPE,
the frequency- dithered laser signal is registered by a photodetector. If the laser’s frequency
i s accurately locked to the assigned FPE transimission peak, the componer it of the pho-
todetector output at the fundammental oscillator fi cquency will be zero. 11 owever, asinall
offsct between the laser frequency and the transmission peak of the FPE will yesult in a
non- zero output at the fundamental frequency. The photo detector output is homodyned
with the drive oscillator signal to derive a1 estimate of the laser-vs JFPE frequency oflsct.
The resulting crror signal is 1o w-]w s filter ed and fed back to the control inputs of the
laser to cficet a frequency corrections. A schematic of this optical frequency locking loop

(ok’'], 1.) is showninFig. 2.

11. MATHEMATICAL. MODEL
The transmission cocflicient for a lossless FPPI can be modeled as

: 1
Typy = - ; ‘ 1
T Fsin(a 'wf.;i(), ™

where 0 (-:7)? is the cocflicient of finesse, and vy sk is the free spec tral ra nge. The
finesse F is given by

. VSR
Fo=o- ! 3 (?)
[ VREWHM

where vpwnn s the fullwidth at half maximun of the FPE transmission peak.  The

frequency of the lasers, v, is modcled as

voo: v, 1o b AR, (3)
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where v is theresonance frequency, v, is the frequeney deviation from the transmission
peak, and Av(1) is the frequency modulation.

More specifically, the frequency modulationis modeled as
Av(t): /2 g, cos(S1), 4

where ¢, is the modulation depth and §© is the modulation frequency which is much
higher than the inherent laser frequency jitter. In the following, the terms “modulation
frequency” and “ fundamental frequency” will be used interchangeably. Equation (1) is
plotted in Fig. 3 {or the custon, high finesse 11’1’5 used in laboratory development work.
The cavity length of this FPE is b cin, which results in a free spectral range of 3 GHz. The
full width at half maximumn, YkwnM, is experimentall y incasured to be 300 K1z, These
cavily paramecters are used throughout this paper.

The output of the photodetector is modeled approximately as
v(1) = V2A Ty (e 1) I n(l), (5)

where the noise n(1) is modeled as a narrowband Gaussian random process. Using equation

(1)-(b), the expressionfor the photodetector output can be approximated as

o(1): V2A- — : 4 n(t), (ti)

14 Fain?(a 2t Vg coser)y

VpSh

This 110del eflectively assumes that the FPE reacts instantancouly to ¢l anges in the
modulation frequency, 2. This assumption IS reasonable if the modulation frequency
the drive oscillator is much less thanvpwnm. (The finite response time tof the ¥PE s,
however, taken into account in deriving the power spectral density of frequency jitter in
Appendix A))

Figures 4. shows the normalized photodetector output as the laser is modulated by

the drive oscillator. Specifically, the output is plotted as a function of time for the case of
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no frequency locking error and in the absence of noise. A similar plot is shown in Fig. b
for the case when some frequency locking crror is present. This frequency locking crror is
responsible for the appearance of a fundamental component (period 0.01 relative units) in

Fig. .

111. FOURIER EXPANSION AND OPTIMAL MODULATION DJEPITH

Note that the signal portion of the photodetector output, given y the first termn of
the right hand side of (6) , is periodic with period 7' - 2(;‘ . This periodicity suggests
the existence of a Fourier series expansion for the signal. To extract the error information
contaimed in cach harmonic, the photodetector output signal is expanded as a trigonometric
Fourier series:

v(1) = V2A < agH >: [, cos(n§u) 4 by, sin(n§2)] ¢ -1 n(2). (

n:=1

-J
—

The Fourier cocflicients are given by
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One may choose 19 = - 1'/2 so that the integration limits become symmetric and the b,

are thus scen to be identically zero.
Again, the OFL)’s synchronous detector will pass only that portion of the photode-
tector output that matches its reference input (i.c. the drive oscillator) in both frequency

and phasc. The crror signal can thercfore be written as

e(t) = Aay(Ve,gm) - (1), 9



where the fundamental Fourier cocflicient depends on both frequency locking ci-i1mor’, v,
and the choice of modulation depth, g, . The @i(1) is the equivalent noise process ereated
by multiplying the noise at the photodetector output with the oscillator signal. The error
signal ¢(1) is then low-pass filtered and fed back to the laser controlinputs.

As analternative to the Fourier series expansion, the photodet cetor output may be
approximated by a first-order Taylor series expansion [5], This approach yields ancrror
signal

/i
D) s - 04 X200 1. - T(1
olt) s 8/}"’}'{'\\'{;;1\1 o 1 A1), (he)

1)10] »otionalto v.. Hower (10) is only valid for sinall g, and is best viewed as a qualitat jve
description of the error signal.

It is, of course, desirable to maximize the a ror signal for a given lascr-vs.- FPE fre-
quency offset . The fundamental Fourier cocflicient is plotted as a fu]lc.tie]] of modulation
depth in Fig. 6. Note that the error signal reaches a maximum at approximately 80 XHz,
indicating the existence of an optimal modulation depth. For comparison, Fig. 6 also plots
the first-order Taylor series expansion oOf the error sigual.

Figure 7 shows the fundamental Fourier cocflicient as a function of modulation depth
for several values of frequency locking error. This figure confirms that the optimnal mod-
ulation depth is &~ 80 KHz and' is fairly independent of frequency locking error. Figure 8
shows the fundamental Fourier cocflicient as a function of frequency locking error for mod-
ulation depths of 70, 80 and 90 X1z, This figure indicates that the crror signal amplitude
i s inscnsitive to small variation in modulation depth for frequency locking errors as large

as 1 b0 KHz.

IV . FREQUENCY-1,00KED O1°F RATION AN ]) KrrrcT 01,001 NOISE

A simplificd block diagram of the OF1.1, is shown in ¥ig. 9, where vyp(1) is the
frequency jitter due to laser frequency noise, v (1) is the frequency error, v (1) is the
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frequency correction, (1) is the additive noise, and 4 is proportional to the laser signal
power at the input of the FPE. The loop gain K is the product of the laser tuning cocflicient
and all other amplifier gains, and F'(s) is the loop filter transfer function. The function
an1, (V%) is a nonlinear function of 1, and is the fundamental Yourier cocflicient evaluated
al the optimal modulation depth of 80 KNz, When the frequency locking error is sinall

the non hncar function gny, (1) can be approximated as

gn1L(ve) 7= N1 (0)ve, (11)

where gny1,(0) is the derivative of gni.(ve) with respect to v evaluated at v = 0. The
exact and approximate forms of gny,(v.) are plotted in Fig. 10; this plot verifies that
approximation (11) is accurate provided the frequency locking error is less than = 30 K.

It can beshown that! the 0171,1, closed loop transfer function, from gy (1) to v (1), is

(6]
) A{}Nl,(())](]"(s) (]?)
s+ Agn1. (U) ]\']"(S) ‘ ‘

]]] (S) =

where F'(s) is the loop filter transfer function. The transfer function from vy (1) to v.(1),
Hy(s), is related to the closed loop transfer function by Ho(s) = 1- Hy(s).

Thie performance of the OF1.1, is aflected by both additive noise and frequency noise.

When the loop is operating in the lincar region, the effects of individual noise sources can

be determined separately and then combined to obtain thet overall result [7]. The variance

in frequency oflset due to additive noise can be wri tten as

o0 9 S T
odwe [CimGzpr U, | (13)
0

(Adn1.(0))
where San(f) is the one sided power spectral density (PSD) of the additive noise [6, 7,

9]. The contribution due to frequency jitter can be caleulated as

0%y - ] G2 NP S dlf, (14)
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where Sn1(f) is the PSD of the frequency jitter [6,7, 9). The PSD of the frequency jittae

can be further expanded (Appendix A) as:

Snr(f) [’] —I(?,nlAi)?f? 1["'1 1{} u ’,:21 0<f < o0, (1)
where At represents the photon lifetime of the FPY. The photon lifetime is related to the
FPE’s vewnm by vewnwm = 1/(nAt).
For ‘a suitable choice of F(s), Ho(72nf) will have zeros at [ = 0, characteristic of
a perfect second-order loop [6, 7). This loop will then be unconditionally stable and
the zeros of Ho(32nf) at f = 0 will C(nn])cnéatc for the poles of the frequency jitter
speetruin, allowing the loop to accurately track low frequency fluctuations. Morcover, a
perfect lincarized sccond-order loop will also have a theorctically infinite pull-in range for
frequency aquisition [6). For these reasons, F(s) is chosen to be of the formn

14 198

F(s) - (16)

718
For a perfect second-order OFL., the damping factor, ¢, and onc sided loop bandwidth,

13),, are given by [7]

¢4 ] \/Z??AQN‘,'(O)K’ ()
2 71

and

o0
Jf,,:“/ |y (Goa ) df
0

71 -1 12 Agny, (0) I
47]72

(18)

respectively.
When the additive noise is dominated by shot noise with one sided power spectral

density N [Watts/H Z], then the variance due to additive noise becomes

oin - :
AN /’.‘llr?g],(o)

8

B, (19)



2 . . .. a . .
where p = -ﬁo. The contribution of frequency jitter to the variance can be written, using

(14) and (1) , as

s [T, 2| 1 ke ks
e [T IGRDE |5 o] 11 ] @

gl 07y 0, (20)

where 02, o;"/l., and o;"'/p arc the contributions of the white, 1/f, and 1/f? components of
the  frequency  noise.

Y¥or a general perfect OFLL, the above integrals for 02, o ]7/“ and o ;"/f? arc very difficult
to evaluate analytically. However, some simplifications can be inade if the OFLIL is assuined
to be critically damped,i.c. (= 1. Dctailed calculations of these ¢ = 1 integrals for cach
of the frequency noise contributions are given in Appendices B, C, and 1). The results
arc swnmarized below, where I3y = 5747 5) for a clinically-clall)])ccl, perfect second-order
011,/

The white frequency noise contribution is caleulated in Appendix B:

02 . . k| 2 :ff]f;,/\i 01)
T BAY (14 Ay’
When B AU <<1, (21) can be approximated as
: .
2 1
ST I A 1). 22
oLt (AL<<) (22)
The 1/f contribution is caleulated in Appendix C:
k 1 | 8
2 2
R I E e 1Y ( ]h,/\i) . (23)
YUy Cman® (201 Emant o \b
When ;A1 << 1, (23) can be approximated as
1 8
2 o S D hy
U]/fw Iu? [? I l" (5]}],/\1)] O 1 A< <1 (24)
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The 1/ f? contribution is calculated in Appendix D:

02 I E)T(? 1 (?r)
N N 1 ' *,
1/1? 3]6]31, 4 (ﬁlh,/\i)?.
When I3, At <<1, (25) can be approxim ated as
2 57(?
0112 % kf‘i(#lh (A << 1) (26)

Figure 11 shows the contributions of 02, o;"/f, and of/f;'. Also shown is the sumn of
these contributions, 03),.. This figure is plotted for Af = 1.0G microscconds, ky = 0.1 Hz,
ko= 0.75 x 10* Hz?, and k3 = 0.5 x 107 Hz® as experimentally measured in [8].

Because the additive noise and the frequency jitter are independent, the total fre-

quency locking, error variance can be written as

2 2 2
0y, = OAN -t Oy

] k

1 2. 81Nt
-y B ) :
P 4x1,(0) (8AM)

(14 E1.00)°

e "2,, ) .].| - ] o (?]3],[\1)
V- eman’ |21 @man\

Hu? ]
| kg- - e (27)
3]()]3]‘ (] - (E:I}LAt)?_
When I5),A1 << 1, (22) , (24) , and (26) can be used to reduce (27) to
1 k 1 8 bn?
2o B 2 kL m (Smat)| 4 ket (At << ). (28
ov & i 0071 da "’[2 ’]“(5 LA A Reyey, TAE<<d). (28)

Figure 12? plots the variances due to additive noise and frequency jitter, as well as
their sum. The additive noisc plot asswines p = 90 dB-Hz. It can be scen from Fig, 12

that performance of the OFLI is frequency noise imited if the loop bandwidth is less than
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~ 1 8560 Hz and otherwise shot noise limited. A famnily of curves representing total rins
frequency locking, crror for diflerent values of p is plotted in Fig. 13 as a function of loop
bandwidth. Figure 13 shows that an rms frequency locking error of less than 600 Hz can
be achieved with a loop bandwidth of 500 H z for p greater than 80 dB. The fact that
this Jocking, error is much less than 30 KHz indicates that the linear approximation (1 1)
is self-consistent.

Fig. 13 also indicates the existence of an optimal loop bandwidth resulting ina
minimum frequency locking error variance. This optimal bandwidth depends on p and is
about 500 Nz for p between 80 dB and 1 00 dB. Fquation (27) can be used to detemine the

optimal loop bandwidth of an OFLI, for any given p .

V.SUMMARY AN]) CONCILUSIONS

A basic laser frequency locking systein employing a Fabry- Perot etalon and frequency
modulating oscillator was outlined. A theoretical analysis of this optical frequency locking
loop (OFI.1) estimated its performance in the presence of shot noise and frequency noise
typical of diode-pumped Nd:YAG lasers. In paticular:

a) Contributions fromn shot noise and cach of the frequency noise components to total
frequency locking error were analyzed and displayed as a function of loop bandwidth.

b) An optimal modulation depth, ¢, of &~ 80 KHz that maximized the error signal
amplitude and minimized frequency locking (:rror'was identified.

¢) The expected performance of the OFLL, as measured by of,t was then estimated for
this choice of optimmal modulation depth.

The analysis shows that an rins frequency locking ¢ ror, i.c. anoffset of laser-vs.-I'I'l;
transimission peak frequency, of less than 600 Hz can be achieved with a loop bandwidth
of 50(J Hz for p greater than 80 dB. This verifics that the lincar approximation (11) is

sclf-consist ent for analyzing the proposed frequency locking subsystem using, F1°FE. Based

1]




on this analysis, an optimum loop bandwidth which minimizes frequency locking error can

be determined for a given p.
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AY PENDIX A: CALCULATION of THE FREQUENCY J1TTER PSD

The frequency noise process, fn(1), is modeled to contain a white component, a 1/ f

component, and al/f? component. Mathematically, the PSD of frequency noise is modeled
as

k k
SN (f) = ki 4:» | --fi 0< f < oo, (A

where k1{Hz7) is the one sided 1°SD of the white component. The constants k2 [m?] and
ks []]'/,3] indicate the magnitudes of the1/f and 1 /f? components of the frequency noise
respectively. The frequency noise model givenin (A 1) was verified experiinentally in [ 8]
and indirectly in [9, 10]. Tlic paramncters associated with the frequeney noise of the a
diode-pumped Nd:YAG ring laser were deternined to be ky = 0.1 Hz, k= 0.75 x 101 Hz2,
andkz: 0.5 X 10"Hz*[8).

High frequency content of the frequency noise is limited by the fact the finite response
time of the FPE. The detected frequency jitter can be related to the frequency noise by

the following modecl as

r oo

vyr(l) = j h() (- 1) dr = h(1) 5 Ix(1), (A2)
where (1) is the inpulse response of the FPE given by

d e difor i >0
h(2) { 6\'( oo . (A3)

ot herwisc,

and Al is represents the photon lifetime of the ¥PE. The photon lifetime is related to the
FP¥’s VEWHM by VEWhHM =~ ]/(7(/\'[).
By using the fundamental theorem of the power spectrum [12], the PSD of the fic-

quency jitter can be written as

Sav(f) = 1H(OI Sen(f), (A4)

13




where H (f), the Fou ier transform of h(t), is calculated to be

1
H(f): -
(.f) ] - .7-?‘7(/\1"/" (Ah)
with 72 = - 1. Thercfore the PSD of he frequency jitter becomes
1 k k
R 0<f<oo. (AG)

S H - A
nr(f) (14 @nA)2f?q | "
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APPENDIX B: CALCULATION OF WHITE FREQUENCY NOISE CONTRIBUTION

The frequency locking error variance duc to white frequency noise for a critically

damped, perfect second-order OFLL can be written as

2
2 - o -— .7 - - —
e A]Jé (2) 12 [ (2ﬂzﬂt)2f?] i (1)

where a = bn /(213),). This can be rewritten, using Hartial fraction expansion, as

k / © A A )
2 1 1 2
04 = s daf<- 4= .
(2nA)? ], { [f _|‘j.(7’ 2 [f . ].(2;]?

RIEER
-AS AG
l [f4 J"(zfm)] ! [f~ j.(?i,m] 32

1wt
i [f—l Ty
2
P2(f) = . f4 ! - 7'? 1
[ a
1
4
Ya(f) = - f f 1 I omAl),
Pa(f) - N '(137}At) .
and
2120, 2%, .. ! . ]
] b sl gm0
then

. 1
A= A= 1/’1(f)l_j_2 ST

Coqrn I g (84
As= Ay df | .z ad\2 " atd )
! : ' (13%)

* Aty @

As= A= ()]

J('um)
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where

1 4
d [(2&[7\1)’5 Q. (356)

and A* denotes the complex conjugate of A.

Thus

, k oo 1 ]
2. __M el - - .~ -
Ow (27 A)? / ?R({ a?d /- j.?]?

i B ,
: lf. B
16(n A1)S d? [f i m)] }(f (137)

Performing the indicated integrations and algebraic simplifications reduces (B7) to

2+ B0
o2 - ke KT (138)
A1) | (14 L.a0)°
If BLAL << 1, (B8) can be approximated as
2 P g AL << ), (139)
Yo AN '
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ArrENDIX C: CA LCULATION OF 1/ FREQUENCY NoIsk CONTRIBUTION

The frequency locking crror variance ducto 1 /f frequency noise for a critically-

: a’f ,

damped, perfeet seccond-order OF1.1, can be written as
o0 f?
i G I:ZJ

_ k2 / A
@2aAt)? Jo [(_?)?_| fg]f f2 i df.

[¢]

[1 1 (2n ADZIY T

: 1

(2nA1)

()

(C2)

Using the same formalism as for o2 in Appendix B, but with appropriate changes in the

Pi(f), i.e. f4in the numerator is replaced by f3,

Avs Ay ()|

; .'l
«

. dv
Ay= A= ‘/(JI;” )
JE
As= ALs ;/;](f)l. .
(22 At)

Thus,

e
2ad’
1 1
B(on AL
1 1

C2(2nAl)2 d?

ko o 7 1
2 .. M2 [ ope
1/ (27:At)?/0 . {?ad[f %]2

1
4 ;

1

] ]

TEIN VT

2oty ” - - ] } dr.

-7 (21([\1)

Performing integrations and algebraic simplifications reduces (C4) to

k
0;&’/‘; N ? ; E . 1 . n —f])’] A
1- o) (21 (Ep.at)(® )]
If BLAL << 1, (C) can be approximmated as
1 8
o;"/{ SN [2 4 In (B]}],Ai)} o

(C3)

(C4)

(C3)

(C6)




APPENDIX D: CALCULATION OF 1/f? FrEQUENCY NoOISE CONTRIBUTION

The frequency locking crror variance due to 1/f?% frequency noise for a critically-

damped perfect second-order OFLL can be written as

o ] !
ot b byl a0 w
ks o 12 L -
T (2n00)? / [(1)? | ,r:»]? [f? - '(nlm)} ¥ o)

Using the same formalism as for o2 in Appendix 13, but replacing f* in the numerator of

Pi(f) with f2,

1
A= Ab- [T
] 2 Q/)](f) ;: 4(1
(Iz/)]( ) j [a 1
Az = A} - S R B
3 4 (If .2 d \ 8 | ad)’
e R ¥ L (13)
Jz?‘lA') 4n Al (I?
Thus,
k b 1 ]
2 3
= 21Rc :
T1/12 (27 A1)? / {4(1[ z]
7 o ' ~] ) 1
T d\8 " ad) [f- i2]
i1 1
N L D4
|47x/\i(17[f_7 ]}(f ((4)
(?ﬂAt)
Performing integrations and algebraic simplifications reduces (14) to
2
2 7t 1 r
ol ks |- N (15)
/ ]G]f], |] - (g]f],At)Q
If Bt << 1, (D) can be approximated as
bn?
0]/f7 ~ 1\3](;]; (]3],At <L ]) (])G)
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Figure 2. Basic elements of a frequency stabilization subsystem.
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Figure 3. Frequency response of the custom high finesse Fabry-Perot Etalon. T he cavity length
is 5 cm, which results in a free spectral range of 3 GHz. Fullwidth at half maximum is
experimentally measured to be 300 Ktiz.
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Figure 4. Normalized photodetector output as the laser is modulated by quadrature dithering oscillator:
no frequency locking error and zero noise.
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Figure 5. Normalized photodetector output as the laser is modulated by quadrature dithering oscillator:
small frequency locking error and zero noise.
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Figure 6. Fundamental Fourier coefficient as a function of modulation depth for some frequency locking error,
Also shown is a first-order Taylor series expansion, valid for small modulation depth.
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Figure 7. Fundamental Fourier coefficient as a function of modulation depth for several values
of frequency locking error.
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Figure 8. Frequency locking error signal as a function of frequency locking error at optimal modulation
depth of 80 KHz. Also shown are the curves for modulation depths of 70 KHz and 90 KHz.

N

VJn (1) 7]
—-—-{A 0 (Ve +¥ -

S 1/s ’>._.._J|—_ F (; .__J

Figure 9. A simplified block diagram of the optical frequency locking loop (OF LL).
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Figure 10. Linear approximation and exact value of gNL(V") as a function of frequency locking error
at optimal modulation depth of 80 KHz.
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Figure 11. Contributions of white, I/f, and I/ffrequency noise components to the frequency locking
error as a function of loop bandwidth. Also shown is the sum of these contributions.
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Figure 12. Contributions of frequency jitter and additive noise to the frequency locking error. Also
shown is the sum of these contribution. 1 his figure is plotted for p = 90 dB-Hz.
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Figure 13. Root mean squared frequency locking error as a function of loop bandwidth for
several values of p.



